skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eskenazis, Alexandros"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 15, 2025
  2. Abstract We prove an extension of Szarek’s optimal Khinchin inequality (1976) for distributions close to the Rademacher one, when all the weights are uniformly bounded by a$$1/\sqrt{2}$$ 1 / 2 fraction of their total$$\ell _2$$ 2 -mass. We also show a similar extension of the probabilistic formulation of Ball’s cube slicing inequality (1986). These results establish the distributional stability of these optimal Khinchin-type inequalities. The underpinning to such estimates is the Fourier-analytic approach going back to Haagerup (1981). 
    more » « less
  3. Abstract We obtain Rosenthal‐type inequalities with sharp constants for moments of sums of independent random variables which are mixtures of a fixed distribution. We also identify extremizers in log‐concave settings when the moments of summands are individually constrained. 
    more » « less
  4. null (Ed.)